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In this paper is presented an analytical model, which makes the similitude between the DTMM theory of
composite multilayer bars and the FSDT theory used in the study of composite bars and plates in a dynamic
regime. The authors proposed a numerical application of the model, for two different bars made from glass-
epoxy reinforced composite. The experimental validation of theoretical results was made on a composite
bar as a component of a quadrilateral mechanism, whereon the leading element describes a rotation motion

with the constant angular speed.
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The dynamic studies on composite plates and bars take
into consideration the following aspects:

- the statistical description of the load and proprieties
of the composite structure;

- the determination of the dynamic response of the
structure;

- the calculus of the structure reliability coefficient which
defines the probability that the structure response will not
exceed a certain level.

There can be mentioned the probabilistic studies [1-3],
where the authors determined the elastic characteristics
of composite materials.

The composite plates and bars could be analyzed using
a lot of theories that differ mostly by the inclusions or
neglecting the effects of angular deformation and rotational
inertia respectively. The fundamentals of the classical
lamination theory [4] are based on the hypothesis that a
straight-line, normal on the median surface before
deformation, remains straight and normal on the median
surface also during deformation. For laminates with a ratio
between the elasticity modulus E and shear modulus G
reaching values of 25-40, be can proved that this theory
overestimate the natural frequencies of the structure.

Another theory (First - order Shear Deformation Theory
- FSDT) has been developed [5] and later modified [6].
This theory relies on a linear distribution of the shear
stresses and requests a correction factor similar with the
one from isotropic plates. This theory states that a straight
line normal to median plane before deformation remains
straight without keeping the normality on the median
surface during deformation.

Exact theories rely on a non-linear distribution of shear
stresses along the thickness of the plate or bar. The
inclusion of high order terms implies the inclusion of
supplementary unknowns. Moreover, when fulfilling both
the distribution of shear stresses in thickness is parabolic
and if the limit conditions on external surfaces, it is not
necessary a correction factor. Based on this fact, it was
developed a theory [7] (High - order Shear Deformation
Theory — HSDT) where it is assumed that stresses and
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strains normal to the median plane are null. Another theory
in which are considered also the stresses normal to the
median plane has also been developed [8, 9] by removing
a series of contradictions appearing in previous theories
by accepting non linear factors of shear stresses in
thickness; also, they did not neglect a part of the normal
stresses obtained by the loading of the composite
structure.

The case of elastic laminated plates loaded with
periodical forces reaching Mathieu type equations was
considered [10-12]. The dynamic stability of composite
materials with visco-elastic behavior using Liapunov
functions method was investigates [13], obtaining a
numerical procedure that allows the determination of
structure stability for a set of parameters. For composite
materials like boron - epoxy resin or graphite - epoxy resin
a non-linear behavior appears due to material matrix that
affects mainly the shear modulus [14].

Similar results have been obtained in [15, 16].

The studies of the composite materials dynamics
reserved a special place for sandwich bars made from
several overlapped layers with similar thickness. Most
studies refer to three layer sandwich bars, the middle layer
having visco-elastic behavior and the inferior and superior
layers having extra elastic and resilience proprieties. Other
authors having similar studies on the behavior of these
materials suggested the following:

- there is a continuity of displacements and stresses
between layers;

- there is no deformation along the thickness of the bar;

- the transversal inertial forces are dominant, neglecting
longitudinal inertia and rotational inertia of the bar section;

- the external layers have elastic behavior and are
subjected to pure bending and the core has elastic or visco
elastic behaviour taking over shear stresses;

- the core is not subjected to normal stresses.

Based on these hypotheses have been developed
models considered to be the fundamentals of DTMM theory
[17-19]. Starting from this theory, it was adapted a variation
approach, obtained equations for sandwich plates taking
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also into consideration different angular deformations for
the layers and managing to estimate the stresses between
the layers [20].

Hypotheses of deformation and mathematical model

A particular composite with large applicability in practice
is the multilayer composite. It consists of several layers of
unidirectional composite having different compositions
and orientations of the reinforcement, with different mass
and elastic properties ( fig. 1).

One of the assumptions is that the section of the bar is
rectangular with thickness h=constant and width b =
b(x,). We note by x* the coordinate on Ox, axis of the
inferior surface of the layer k and with h, the thlckness of
this layer. We note by E, and G, the globarelastlc constants
(longitudinal elastic modulus and shear modulus) and p,
the specific mass for the layer k. In addition, the layers can
have many constituents, the overall elastic proprieties of
the layer depending on the elastic proprieties of the
constituents, on their volume fraction and geometrical
distribution as well as on their adherence.

The position of the elastic center of the section can be
determined from the condition:

(g E-Xz‘-dS =0, )

from which results the height x,® of the inferior surface of
the bar referring to the elastic Genter
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The main characteristics of the bar’s section will be:
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We notice that the flrst two characterlstlcs [EALland
[GALIdepend only on the elastic properties of the layers
and their thickness, (Bl depending also on the way layers
are arranged in the section. This gives the possibility that
using the same layers, by changing their order, to obtain
bars with different global properties, including those
regarding the resilience and the dynamic behaviour having
in this way the possibility of their optimization with respect
to the technical demands.

We consider that the bar, subjected to analysis, has a
motion in a plane parallel with the plane of symmetry of
the bar Ox.Xx,

The bar has longitudinal and transversal vibrations from
the movement plane, neglecting the torsion and transversal
vibrations normal on movement plane.

The following hypotheses on deformability are taken
into account:

- any section of the bar, plane before deformation,
moves and the sections of the component layers remain
plane during deformation;

- the section is not rotating around axis Ox, and Ox,,

- there are no discontinuities of the dlsplacements on
the separation surfaces between adjacent layers, thus
presuming a perfect adherence between layers;

These hypotheses are specific to the jag model [20].
With these conditions, the field of displacements in k
layer’s section will have the form:

f (53 5) =14 (3,0) +
(xz AJzk)( i) (8)

W (%5, 21) =18, (1,1, W (25,2, ,,7) =00,

where:
- i is the longitudinal displacement of k layer’s inferior
surface,
- @ - the supplemental rotation of k layer’s section
due to this layer’s deformation.
We know ([20]):

G®, =G, (V)ke{L,2,...n}. )

This relation suggests that the shear stress is constant
along the bar section.

Using the continuity conditions for the displacements
on the separation surface between layers, could be
obtained the longitudinal displacement of the points from
the layer k with the form:

MATERIALE PLASTICE ¢ 45 Nr.2 « 2008



+(x2ﬁ+GlBk]cpl (10)
Glt
where,
L 1 1 x
B=Sh|—-— |-
=2, ‘[G. GJ G, (11)

We introduce:
-longitudinal displacement of the section:

w =u +x,-u,, +G®B (12)
where,
B=— Z[E B.h +
ZEkh k=1
k=]
2 2
E (u")-(d)
+Gk > 1: (13)
the rotation of the section
0, =u,, —G,CP, (14)
where
+ 3 3
C:.b_@i[gk_ (x;C ]) _(x;t) +
(EI) = G, 3
1y 2 (15)
i, BT

Using the displacement u, and the rotation 8, of the
section calculated this way we can write the dlsplacement
of a point from the layer k as follows:

k = — —
W =u; — x,0,

-G,®, {B,‘ -B+x, (—(;- + CH (16)

The introduction of longitudinal displacement (12) and
rotation of the section (14) connects the jag model, DTMM
and FSDT theories.

In [21] is presented the mathematical model for the
vibrations of a composite bar moving in a plane. In case of
thin composite bars moving in a plane one could accept 8
= u,, and the vibrations equations take the next form:

(pAYi=2(pA) 0u,~(pA) &', -
—(pA)eu, —(EA)u,,, = 17
=D (pA) (“01 -o'x, )v

(pA)zZ—-(pI}u;;ﬁ2<pA>a)z;1+
+(pA)eu, —(pAyw'u, +
+<'01>w2"2,11 + (EI>“2,m1 =

= p, ~my, ~(pA) (a — £x,),

(18)

where:
- wis the angular velocity of the bar,
- € is the angular acceleration of the bar,
- a,,, ,, are the acceleration components of the
Cartesian Coordinate system’s origin of the bar,
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- p, p, are external forces distributed on the length of
the bar,

-m_are the external moments distributed on the length
of the bar.

In [22] one could find a study of the operator associated
with equation (18), in a general form, from the spectral
point of view.

Next, it will be studied the case of a composite bar in
translation movement, with the boundary conditions (for
x,=0) and x,=L:

-for longitudinal vibrations
u, (0;2)=u, (L;t)=0; (19)

-for transversal vibrations
u (052) = u, (L;t) =0,

20
uy, (08)=u,(Lt)=0. @
We will consider null initial conditions both for
transversal vibrations as well as for longitudinal vibrations.
In these conditions the deformations of the translating
composite bar are;
-the longitudinal deformation

2.3 (-1)" -1
ul(xl,t)=z;%'

n

d 21
( sin ( 7))ay (7 )dr] sin nix‘ .
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nz |(EA)
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L (pA)( ) (22)
is the set of its own pulsations for the longitudinal vibrations,
-transversal deformation:
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is the set of own pulsations for the transversal vibrations.

Numerical application and experimental verifications
The numerical calculus and experimental validations

have been done for composite bars having an epoxy resin

matrix reinforced with fiberglass stripes, composing a cloth

arranged in layers. The figure 2 shows a section photo

where is easy to be seen how the glass fibers fit in the

matrix, the volume fraction of the fibers being V, = 0.6.
The main elastic characteristics for the epoxy Tesin are:

- elastic modulus (Young)

E_ = 4500 MPa;
- fransversal elasticity modulus (shear)
G, = 41600 MPa;

spec:lflc mass



Fig. 2. The arrangement of the glass fibres in the matrix

P,, = 1200 kg/m?;
- transversal contraction coefficient (Poisson)

y,=04
-compressibility coefficient
K =7500 MPa.

The main elastic characteristics for the glass fibers are:
-elastic modulus:

E, = 73000 MPa;
-shear modulus:
G, = 30000 MPa;

- specific mass:
p, = 2500 kg/m?;
-Poisson coefficient

Y,=025;
-compressibility coefficient
K, = 4900 MPa.

Intable 1 are presented the results for two different
bars from the same material with different transversal
dimensions.

The own pulsations for longitudinal vibrations have the
same values for both bars. The first six

@ =33280s7"; w, =66560 s7';
values are: @, =99840s™; @, =13312057";

w; =166400 s7'; @), =199680 s~".

Table 1
Characteristic Bar 1 Bar 2
(ED[(N/m*)-m ] 5.63 77,76
(oA)| (kg /m*)-m? ] 1188-10° | 2851,2:10°
(EA)[(N1m?)-m*] 270-10° 648- 107
(pz)[(Kg/ms) m' ] 247,5-107 3421,4-10”
(Gay[(n1m?)m] 318-10° 736,2-10°

The own pulsations for transversal vibrations are
different for each bar.
For the bar 1 the first six values are:

Q,=335,45",Q,=1341,257";

Q,=3017s";Q, =5361,6 57";

Q, =8373,7s7";Q, =12051,4 57",
For the bar 2 the first six values are:
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Q, =804,65"Q,=3215,857";
Q,=7225s";Q, =12818,5s57";
Q;=19976 s™'; Q, =28675 57",

We notice that the bar own pulsations in case of
longitudinal vibrations have very high values so practically
having a resonance for this kind of vibrations did not
represent a danger. It is not the same case for the
transversal vibrations where the first own pulsations are
in the interval of those used in technology. For the case of
the own pulsations of transversal vibrations we notice that
the term with the coefficient [@ I has a significant influence
only for high level pulsations and can be neglected in many
technological applications.

We study the case of a composite bar as a part of a
quadrilateral mechanism structure where the leading
element rotates with constant angular velocity p = 251ts™.

The following values have been obtained:

Longitudinal displacement:
< 149,2

u,(xl,t)=z .

= ] (66960n)" ~6257" |

-(cos 2572t - cos 66560nt -sin%; (25)

]

the maximal values of the displacement for the first two
harmonics of the development are:

for n=1 u,, =3,32:10" m;

forn=2 u,, =4,16-10" m;.

One can notice that the longitudinal deformations can
be practically neglected.

Transversal displacement:
- for bar 1

= 149.2:(1~(-1))
)= .
. (x01) ,,z:.:nQ"(an-l,OlS-lO"‘)
Q, sin(25m)-25msin(Q) | . nax (26)
. -Sin———;
Q -6257
the maximal values of the displacement for the first two
harmonics of the development are:

- for n=1 u,, =0,002825m;
-forn=3 u,, =3,5310"m;
-forbar2
w 149,2-(1-(-1)"
u2(x"t)=nz=1:ngn(1+n(2-5,(85-)1(1*‘)'
[Q sin(257r) - 257 sin(Qnt)}_sin x| @)
Q -6257 |

the maximal values of the displacement for the first two
harmonics of the development are:

-forn=1 u,, =4,68-10" m;

-forn=3 u,, =521-10" m;.

It ca be noticed that the second harmonic’s amplitude
is about nine times smaller then the first harmonic’s
amplitude and in this case we can approximate the
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amplitude of the bar’s vibration with the amplitude of the
first harmonics.

Experimental determinations with the vibration analyzer
BK 2515 have been done, obtaining the measurements in
the time mode within the range 0 - 12.5 s. We processed
the mechanical signals for displacement with the 4391
piezo-electric transducer having the sensitivity 1+0.02 pC/
ms.

For data processing, we used BK 7616 software and the
functions of IEEE - 488 interfaces.

In figure 3 is presented the variation of bar 2
deformations for the middle section.

The study of vibrations from structures built from
composite materials has immediate applications in
aeronautics due to the fact that these structures insure a
very good report between the mechanical resilience and
the quantity of material used. Thus, favorable
consequences on cost efficiency and reliability of airplanes
and rockets are obtained.

In naval domain, these structures could be used to build
light boats, obtaining high rigidity for a low total mass,
creating the conditions for raising speed, payload as well
as reduction of fuel consumption.

The composite materials are often subjected to
vibrations in parts like clutch disks, body parts, auxiliary
connecting rods and others.

In the medical field, we find the composite materials
used for prosthetics and implants because they are
chemically stable and do not introduce negative effects,
the human body easily tolerating them.

In sports we can use them to make tennis racket, skies,
bicycle frames, protection helmets.

In all these fields, using composite materials with
appropriate dynamic response according to certain specific
conditions represents a way for rational and integral use
of materials.

Conclusions

After analyzing the theoretical and experimental results,
the following conclusions are presented below:

-the bar own pulsations for its longitudinal vibrations do
not depend neither on the size of the section nor on the
composing layers’ geometrical distribution;

-the bar own pulsations for its transversal vibrations
depend on the way the layers are arranged in the section
and can be modified by changing only the layers order;

-the bar own pulsations for its longitudinal vibrations
have very high values that cannot be found in most
applications so the danger of having a resonance for this
type of vibrations is very low; it is not the same case on the
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transversal vibrations for which the first own pulsations
are under 1000 s™;

-the term containing [PIL] characteristic has an
influence only for high values of “n” so in practical
applications can be neglected;

-the compared study of the transversal vibrations for
the two bars shows that the amplitude decreases when
the values of geometric-elastic characteristics of the
section are raising; for the bar own pulsations of the
transversal vibrations a reverse phenomenon appears,
meaning that amplitude raises with the raise of the bar
section characteristic values.
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